Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice.

نویسندگان

  • S V Brooks
  • E Zerba
  • J A Faulkner
چکیده

1. Our purpose was to investigate the initial mechanisms responsible for contraction-induced injury. Most studies of mechanisms of contraction-induced injury have been based on observations made either shortly after many repeated contractions at the peak of fatigue, or days after, at the peak of delayed onset injury. As a result, conclusions based on these studies are complicated by interactions of mechanical and biochemical events, as well as the passage of time. We studied the initial mechanical events associated with contraction-induced injury immediately following single stretches of whole skeletal muscles of mice in situ. 2. We tested the hypothesis that immediately following a single stretch, the severity of contraction-induced injury is a function of both strain and average force. Consequently, the work done to stretch the muscle would be the best predictor of the magnitude of injury. Extensor digitorum longus muscles were adjusted to optimum length for force (L(o)). Passive (not stimulated) and maximally activated muscles were exposed to single stretches of 10, 20, 30, 50 or 60% strain, relative to muscle fibre length (Lf), at a rate of 2 Lf s-1. 3. The magnitude of injury was represented by the force deficit 1 min after the stretch expressed as a percentage of the maximum force prior to the stretch. The occurrence of injury was confirmed directly by electron microscopic analysis of the ultrastructure of muscle fibres that were fixed immediately following single stretches. 4. For active muscles, a single stretch of only 30% strain produced a significant force deficit, whereas for passive muscles, a larger strain was required. Stretches of greater than 50% strain resulted in greater force deficits for passive than for maximally activated muscles. For either condition, the work done to stretch the muscle was the best predictor of the magnitude of injury, accounting for 76% of the variability in the force deficit for maximally activated muscles, and 85% for passive muscles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The magnitude of the initial injury induced by stretches of maximally activated muscle fibres of mice and rats increases in old age.

1. Our purpose was to compare the susceptibilities of muscles in animals of different ages to the injuries induced by stretching the contracting muscle. Single stretches provide an effective method for studying the factors that contribute to the initiation of contraction-induced injury. We hypothesized that, for maximally activated muscles in old compared with young or adult mice, the work inpu...

متن کامل

Neutrophil accumulation following passive stretches contributes to adaptations that reduce contraction-induced skeletal muscle injury in mice.

Skeletal muscles can be injured by their own contractions, especially when the muscle is stretched during a lengthening contraction. Exposing a muscle to a conditioning protocol of stretches without activation (passive stretches) before lengthening contractions reduces contraction-induced injury. Although passive stretching does not damage muscle fibers, neutrophils are elevated in the muscle a...

متن کامل

Susceptibility to sarcomere injury induced by single stretches of maximally activated muscles of mdx mice.

The purpose was to investigate the contribution of mechanical damage to sarcomeres to the greater susceptibility of dystrophic muscle fibers to contraction-induced injury. Single stretches provide an effective method for studying mechanical factors that contribute to the initiation of contraction-induced injury. We hypothesized that, after single stretches, the deficits in isometric force would...

متن کامل

Protection from contraction-induced injury provided to skeletal muscles of young and old mice by passive stretch is not due to a decrease in initial mechanical damage.

Contraction-induced injury occurs when muscles are stretched while activated (lengthening contractions). The injury is initiated by mechanical damage followed by an inflammatory response. Old animals are particularly susceptible to contraction-induced injury, yet exposure to stretches without activation (passive stretches) before lengthening contractions lessens the injury. We hypothesized that...

متن کامل

Contraction-induced injury to single permeabilized muscle fibers from mdx, transgenic mdx, and control mice.

Muscle fibers of mdx mice that lack dystrophin are more susceptible to contraction-induced injury, particularly when stretched. In contrast, transgenic mdx (tg-mdx) mice, which overexpress dystrophin, show no morphological or functional signs of dystrophy. Permeabilization disrupts the sarcolemma of fibers from muscles of mdx, tg-mdx, and control mice. We tested the null hypothesis stating that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of physiology

دوره 488 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1995